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Fig .  4. The e f f i c i e n c y  of  a c t i v e  thermal  
shielding versus the parameter ~i~ 

ial; Ifw and Ig, component of the effective thermal conductivity of the porous material de- 
termined by its framework and the gas phase, respectively; and, g and ~, roots of the char- 
acteristic equations. 
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ENERGY DISSIPATION IN A SOUND WAVE IN THE PRESENCE 

OF EVAPORATION AND CONDENSATION AT A SURFACE 

V. I. Nosik and D. A. Rus'yanov UDC 536.6.011 

We consider the transmission and absorption of plane and spherical acoustic 
waves in the presence of evaporation and condensation at a flat surface. A 
sound absorbing device is considered as an example. 

The reduction of noise is a crucial problem in many fields of technology: ship-build- 
ing and aircraft construction, architecture, radio, television, and concert studios, and in 
manufacturing plants. Noise from internal sources is reduced using devices based on absorp- 
tion of sound waves caused by friction in porous bodies, resonators, surface vibrations, and 
so forth. Noise from external sources can be reduced by means of sound insulation (sound- 
proofing), where, together with energy absorption, reflection and refraction of waves on the 
boundary between media with different impedances are also important. The search for new 
ways of dissipating sound wave energy is important in both sound absorption and in sound in- 
sulation. 

Hence it is of interest to consider the interaction of sound waves propagating through 
a saturated vapor with the surface between two phases. Indeed, pressure oscillations in the 
gas caused by the incident wave excite velocity oscillations at the interface because of the 
Hertz-Knudsen condition [1-3] and therefore the intensities of the reflected and refracted 
waves change. As shown in [4-6], the intensity of the reflected wave can be significantly 
reduced as a result of evaporation and condensation at the surface. This result is obtained 
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for a normally incident plane wave on a perfectly rigid surface with attenuation in the gas 
phase [4], for the case when the elasticity of the condensed phase is taken into account 
(normally incident plane wave) [5], and finally in the case of oblique incidence of a plane 
wave on a perfectly rigid surface accompanied by the precipitation of a boundary layer [6]. 

However, the cause of the attenuation of the reflected wave remains to be determined: 
is it due to energy dissipation, or, as claimed in [5], to an increase in the transparency 
of the surface? In addition, for sound insulation problems it is necessary to consider the 
refracted wave, which was not studied in [4-6]. The case of oblique incidence on a surface 
has also be studied insufficiently, especially for a gas-solid interface, since in this case 
both longitudinal and transverse waves can be generated in the condensed phase. 

We consider the reflection, transmission, and absorption of plane and spherical sound 
waves propagating through a saturated vapor and incident upon a plane interface. We discuss 
the possibility of using energy dissipation resulting from evaporation and condensation pro- 
cesses in sound absorbing and sound insulating devices. 

i. The z axis is directed along the outward normal to the surface and the x and y axes 
are tangent to the surface. We consider the case when the acoustic Mach number is s~nall and 
the mean free path of a gas molecule is short in comparison with the wave length. Tilen, 
neglecting condensation in the bulk, the problem is described in the first approximazion by 
the linear equations of acoustics subject to boundary conditions which take into account the 
kinetics of evaporation and the elastic properties of the condensed phase: the mass balance 
conditions and the equality of the normal and tangential stresses. In the first approxima- 
tion the stress in the gas Pi~ is zero and the rate of evaporation is determined by the gen- 
eralized Hertz-Knudsen conditlon [2], hence, letting ~ be the velocity of the boundary be- 
tween the phases, we can write: 

Pz~=P;z ,  p L = O ,  p ~ z = O ,  (1) 

9o (v~ - -  ~) -- 9~ (v~ - -  ~) = ] = ~ [p~ (T')  - -  p]/ ]/-~-RTo, 

(2) 

I/ • ,~ = 2~ 1 --0,411~ 

Since the  boundary c o n d i t i o n  invo lves  the  s a t u r a t e d  vapor p r e s s u r e  Pe = p*e-Q/R~ which 
depends upon the  s u r f a c e  t empera tu re  in the  condensed phase,  we must a l s o  so lve  the  hea t - con -  
duc t ion  equa t ion  in the  condensed phase wi th  the  boundary c o n d i t i o n s  

T ' = 0  ( z = - - o o ) ,  - -~ '  0T' _ Q /  (z=0) .  (3) 
Oz 

In the above equations we have omitted corrections which are quadratic in the small 
parameters, gradient terms in the Hertz-Knudsen condition, and the heat flux into the gas 
phase. These assumptions are valid because the omitted terms lead only to small corrections. 
The treatment of the layers near the surface requires a condition on the temperature jump 
and the slip condition for the tangential velocities, and is important from the point of 
view of constructing an accurate physical picture of the processes involved. Such a treat- 
ment leads to new effects (new types of acoustic flow [6] and higher wave attenuation than 
in the bulk), but it contributes only small corrections to the reflection and transmission 
coefficients. We note that in the first approximation the expressions for the refleczion 
coefficients in [4-6] are the same, in spite of differences in the formulation of the prob- 
lem. 

We limit ourselves to waves which are harmonic in time. Because of the linearity of 
the problem, one can introduce complex potentials: the scalar ~(x), ~'(x) and vector ~'(x) 
potentials (here and below the common factor exp(-i~t) is omitted) are related to the veloc- 
ity and acoustic corrections to the pressure by the equations [7] v = A~, v' = V~'-~V > ~'- 
The need for the vector potential arises because of the existence of transverse waves in a 
solid. In the case of a liquid one can put ~'=0. 

The equations of acoustics and the heat conduction equation for the condensed phase 
then take the form 

A ~ + k 2 ~ = O ,  A~ '+k ' 2~  ' = 0 ,  A ~ ' + k ~ ' = O ,  V~ '=O,  
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Fig. i. Interaction between an interface and a plane wave 
incident from the gas phase (a), and a longitudinal (b) and 
a transverse (c) wave incident from the condensed phase. 

aT' 

Oz z 
(4) 

Here we have used the fact that the thickness of the heated layer in the condensed phase is 
normally small in comparison with the wave length, and hence the heat conduction problem is 
one-dimensional. 

| ~ In the plane case, when Vy = 0, ~y ~' the boundary conditions (1)-(3) become 

q%/m r#' __ 2/k ' i  2 = m = ~,t~,o, (5)  
OxOz Ox 2 ' 

2 , 02q~' + 02~' 02~' - -  O, (6) 
OxOz Ox z Oz z 

ozO~ &p'Oz O~'Ox _ m--lm c~ [ Q (7 )  

OT' 
Oz 

Q,o o m [ O~ Or~' Ot[" ] 
~' m - - 1  Oz Oz Ox " ( 8 )  

The p r ob l em i s  m a t h e m a t i c a l l y  c l o s e d  by r e q u i r i n g  t h a t  t h e  t e m p e r a t u r e  p e r t u r b a t i o n  
damp o u t  w i t h  d e p t h  i n t o  t h e  c o n d e n s e d  p h ase  and by s p e c i f y i n g  t h e  p o t e n t i a l  o f  t h e  i n c i d e n t  
wave. 

2. To clarify the effect of evaporation and condensation on energy dissipation in the 
sound wave we consider some classical problems of acoustics. The simplest of these is the 
interaction of a plane wave, incident from either the gas or condensed phase, with plane in- 
terface. From the solution of this problem it is possible to obtain the solution for an 
arbitrary wave by expanding the wave in a set of plane waves [7]. 

Let a wave of amplitude A be incident from the gas phase. We assume a solution in the 
form of a sum of a reflected wave and two refracted waves (longitudinal and transverse; Fig. 
la). The potentials in the gas phase g and in the condensed phase ~' and ~', and also the 
temperature T', are written in the form 

= A  {exp [ik (x sin 0 - -  z cos 0)] ~ V exp [ik (x sin 01 + z cos 01)]}, 

~' = AW exp [ik' (x sin 0' -- z cos 0')1, ~' == AU exp [ik~ (x sin O~ -- z cos Ol)]~ 

T' -- AD exp 11/1/26 z (1 -- i) z + ikx sin 0]. 

These  e x p r e s s i o n s  s a t i s f y  ( 4 ) ,  t h e  a m p l i t u d e  A i s  g i v e n ,  and t h e  a n g l e s  01, O ' ,  0[  and t h e  
complex  a m p l i t u d e s  V, W, U, and D a r e  found  f rom t h e  b o u n d a ry  c o n d i t i o n s  ( 5 ) - ( 8 ) .  

The b o u n d a r y  c o n d i t i o n s  must  be s a t i s f i e d  f o r  a r b i t r a r y  x ,  which i s  p o s s i b l e  o n l y  i f  
t h e  a rgume n t s  o f  t h e  e x p o n e n t i a l s  a r e  i d e n t i c a l  a t  z = 0. Hence 

01 = 0, ksin0 = : k ' s i n 0 ' =  k~sin0~.  (9 )  

The laws of reflection and refraction of plane waves are therefore the same as in "classical" 
acoustics (without evaporation). 
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The reflection and transmission coefficients are found from the boundary conditions 
(5)-(8). Because of the complexity of the expressions, and because we normally have P'0 >> 
P0 and c' > c, we consider only this case. Then 

U =  --2a ~ S 1, D =  2( i - -1)Toco S =  1-@A-}- i ,  
m sin 20~ (1 + a) [ S + A~ J Q (S -}- At) ' 

a = n a cos  02  [3Q~po ' 

p p; c ci 
c o s O '  m Po , n=- -c ,  , h i - -  c' 

Here and below the terms resulting from evaporation and condensation are grouped to- 
gether inside the braces. Evaporation is absent for A = 0, and in this case the terms in- 
side the braces are equal to unity. The presence of evaporation and condensation leads to 
changes in the amplitudes and phases of the reflected and refracted waves. The velocity of 
the reflected wave is of the same order of magnitude as the velocity v* of the incideat 
wave, while the velocities of the refracted waves are of order v*/m, as in "classical ~' 
acoustics. Instead of a velocity node and pressure antinode at the boundary there will be 
velocity and pressure oscillations, however the intensity of the refracted wave does not in- 
crease, but decreases. Indeed, defining the energy transmission coefficients of longitud- 
inal r and transverse r I waves and the energy reflection coefficient E as the ratios of the 
corresponding energy fluxes to the energy flux of the incident wave, and defining the total 
energy absorption by P -= 1 - R - r - rl, we obtain 

4 n i l §  {l--T}, r_L lalictg20~ r -  - - r, R = {1 --co}, ( 1 0 )  
m cosa20 ", n• 

( 1 ~ 1 @(1 ~- A) 2 4 ( 1 - ~  A)A~ 
P = ~ + O  --~n , , t  ] " ~ = 1  -I- ~ =  " , ~ ( 1 + a + a ~ ? '  ~ + ( I + A + A ~ ) ~  

The e x p r e s s i o n s  i n s i d e  t h e  b r a c e s  a r e  l e s s  t h a n  one  when A x 0,  w h i c h  i m p l i e s  e n e r g y  c i s s i -  
pation in the reflected and transmitted waves. 

Suppose now that a longitudinal wave of amplitude Ai is incident from the condensed 
phase at angle 0' (Fig. ib). We assume a solution in the form 

= ,4,V1 exp [ik (x sin 0 + z cos 0)], cp' = A~ {exp [ik' (x sin 0' + z cos 0')] -l- 

-~ W~ exp [ik' (x sin 0~ -- z cos 0;)]}, ~ '  = A~V, exp [ik's (x sin 0(L--z cos 0~)1, 

T . . . .  AiD~ ex p [ ] / 1 - ~ 2  (1 - -  i) z ~ ikxsin 0]  

As i n  t h e  c a s e  c o n s i d e r e d  a b o v e ,  t h e s e  e x p r e s s i o n s  s a t i s f y  ( 4 )  and  t h e  unknown c o n s t a n t s  a r e  
d e t e r m i n e d  f r o m  t h e  b o u n d a r y  c o n d i t i o n s  ( 5 ) - ( 8 ) .  As b e f o r e ,  we f i n d  t h a t  t h e  l a w s  o f  r e f l e c -  
t i o n  and  r e f r a c t i o n  a r e  t h e  same a s  i n  t h e  " c l a s s i c a l "  c a s e  ( a n d  a r e  g i v e n  by ( 9 ) ) .  The r e -  
f l e c t i o n  and  t r a n s m i s s i o n  c o e f f i c i e n t s  and  t h e  p a r a m e t e r  D 1 a r e ,  f o r  m >> 1, n < 1 

W1--  a - - 1  V I =  , U l =  
a + 1 ' ( 1 + a) cos 20j_ cos 0 ( 1 -~- a) cos 20j_ ~ 

2 o ( i - -  l) t g 0 c t g 0 '  
D t -- 

O (1 + a) COS 201(S  + A~) 

The reflection coefficients Wi and U i are the same as in "classical" acoustics, but the 
transmission coefficient V i differs by the factor inside the braces. Hence the reflec~:ed 
waves do not change, even though in the presence of evaporation and condensation at the sur- 
face the velocities in the gas and condensed phases differ. Note that the expression :inside 
the braces is formally identical to the function describing the effect of evaporation on the 
refracted waves in the preceding problem, although the angle 8 is now the angle of refraction 
and not the angle of reflection. This asymmetry follows from the asymmetry of the problem: 
evaporation and condensation proceed in the less dense medium and in the first approximation 
affect only the energy flux in the less dense medium; the energy flux in the denser phase is 
affected only in the next approximation. Indeed, we obtain for the energy coefficients 

1 2 9 3  



1 - - a  2 4n cosZO ' 
q =  1 - - a  , Rt = { 1 - - ~ } ,  

m I1 § al z cos z 20 i cosZ0 

r l~ = II + alZcosZ20~ ' P = O  , 

where the only difference from "classical" acoustics is in the refracted wave. 

It is well known that transverse waves in which the velocity oscillations are parallel 
to the interface do not affect either the normal displacement of the surface or the normal 
component of the stress and hence the reflected transverse wave has the same polarization 
and intensity [7]. Hence we consider the reflection of a transverse wave in which the veloc- 
ity oscillations lie in the plane passing through the normal to the interface (Fig. Ic). We 
assume a solution of the form 

= A2V2 exp [ik (x sin O q- z cos 0)], ~'  = A~W~ exp [ik' (x sin O' -- z cos 0')], 

, '  = A2 {exp Ilk 2 (x sin 01 + z cos 02)1 -~ U~ exp Ilk 2 (x sin 01~ -- z cos 0Z0] }, 

T~ = A2D2 exp [ ~ / I ~ N  (1 - -  i) z + ikx sin 01. 

As before, it can be shown that these expressions satisfy (4) and that the laws of re- 
flection and refraction are the same as before and given by (9). The other coefficients are, 
in the case m >> 1 and n < 1 

a + l '  - ( l + a ) c t g O s i n 2 2 0 1  

2acos20~  
W2 =: n~ (1 + a) sin 20' 

As in the preceding problem evaporation does not affect the reflected waves, but changes 
the amplitude and phase of the refracted wave. The energy coefficients are similar to the 
preceding case: 

1 - - a  2, R ~ =  n• ~ { 1 - - ~ } ,  
r2a = 1 § a mn ctg ~ 0 sin~ 20~ I1 q- al z 

(1) 
r ~ =  n ~ l l + a l  zsin 220' ' P = O  

T h e r e f o r e  f o r  s u f f i c i e n t l y  h i g h  f r e q u e n c i e s  (A ~ 1) e v a p o r a t i o n  and c o n d e n s a t i o n  a t  t h e  
surface leads to a decrease in the energy of the refracted wave and also the reflected wave 
for the case of incidence from the gas phase. The total energy dissipation is small when 
the wave is incident from the condensed phase. 

Having expressions for the reflection and transmission coefficients of plane waves, we 
can consider the interaction of an arbitrary harmonic wave by expanding the wave in plane 
waves [7]. As an example, we consider the reflection and refraction of a spherical wave from 
a flat vapor-liquid interphase, such that there is no transverse wave in the condensed phase. 

The spherical wave exp(iko)/p (0 = {x, y, z} is the distance to the source) is repre- 
sented in the form of a superposition of plane waves with all possible (including complex) 
values of the wave vector k: 

i 
+ 

dk~dk v 
I exp [i (k~x + kuy --4- k~z)] -:- % = e x p ( i k 9 ) / @ =  2n _ L k~ , z < O ,  

Using the reflection coefficient for plane waves V(@) obtained above, we find an ex- 
pression for the potential r of the reflected wave 

i k  2 2a 
= 2---a-- .f _ ,f _ exp [ih (x sin 0 cos ~ + V sin 0 sin ~ + (z + zo) cos 0)] • 

0 0 

• V (0) sin 0 dOd% 
Here k = [k[, and z0 is the distance between the source and the interface. The potential r 
of the transmitted wave is given by a similar expression with v(e) replaced by the transmis- 
sion coefficient W(8). 
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Fig. 2. Dependence of the attenuation coefficient of the 
reflected wave ~ and the refracted wave ~ on the parameters 

(a) and ~ (b): In Fig. 2a: I) A = 0, 2) 0.i, 3) 0.2, 4) 
0.5, 5) i, 6) 3, 7) ~; in Fig. 2b: i) ~ = 0, 2) 0.i, 3) 
0 . 5 ,  4) i ,  5) 2,  6) 5,  7) i 0 .  

Explicit expressions can be obtained in the case m >> i, n < i, kp >> I, np ~ << p cos 6 
(np' is the optical path length from the interface to the receiver). Applying the usual 
procedure of the method of steepest descent [7], we have 

= e• (~k~/p~ [V(O).--iN (O)/~a], A: = l:2 ~V ~ (0) + ~:' <0)ctg 0], 

~ '  = exp ([hp)/9 [W (0) - -  iN~ (O)/kgl, Aq -= 12 [ ~ "  (0) + W'  (0) ctg 01, 

where 9z is the distance from the image source. 

In the approximation of geometrical acoustics the energy fluxes of the reflected I and 
transmitted I' waves are 

_. JP____~o 1' 2~ZP~ 
I - -  2cp~ { 1 - - ~ } ,  --  - - { 1 - - ~ } . m c , p  z 

3. We have seen that evaporation and condensation processes at the surface do nct 
change the angles of reflection and refraction of plane waves. The relative decrease in the 
energy of the refracted wave is described by the function ~, and the decrease in the energy 
of the reflected wave (incidence from the gas phase) is described by the function ~ (see 
(i0)). The decrease in the energy of the reflected wave is insignificant for incidence from 
the condensed phase. 

Energy dissipation due to evaporation and condensation processes does not depend on the 
viscosity and the thermal properties of the gas and is determined by two parameters: ~ and 
~. The parameter & expresses the dependence on frequency, temperature, and the properties 
of the condensed phase, while $ is determined by the condensation coefficient and by the 
angle of incidence. 

The dependence of a on g (Fig. 2) is nonmonotonic and the position of the maximum and 
its value depend on frequency. The maximum is displaced toward smaller g as ~ increases and 
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TABLE i. Attenuation Coefficient of the Reflected ~ and 
Transmitted �9 Wave for Standard Frequencies 

Material o 

Water 1 

Water ! 

Naphthalene[ 1 

Naphthalene!0,5 l 
I 

1 

g 63 ,25 -~5o 5oo looo 2000 
O .,,-I 

0,07360,101 0,141 0,192 0 259i0 341 
i0,037510,05230,072810,101 0;138 0:185 
!0o 128 i0,173 0,232 10'305 0,39210 490 
! I I0.0383~0.0534 0,0743 O, t03 o, 140 1 O, 189 
101944 !0,953 0,959 ,0,963 0,96610,96? 
i0,621 i0,632 0,640 0,645 o,6491o,652 

~x i0,641 0,647 0,651 0,653 0,655 0,657 
x 0.361 0.365 10,367 10,36910,370 0,371 

4000 I 8 0 0 0  

0,438 I 0,523 
0,243 [ 0,309 
0,5931 0,692 
0,247 !0,336 
O, 968 1 0,959 
0,653 10,655 
0,658 ! 0,658 
0,372 i 0,372 

I 

Note 

Normal in- 
cidence 

Diffuse in- 
cidence 

Normal in- 
cidence 

Diffuse in- 
cidence 

reaches a value of unity at the point $ = 1 (e = arccos $). In contrast t the well-known 
cases in electrodynamics and acoustics, the decrease in the intensity of the reflected wave 
is not caused by an abnormally large value of the transmission coefficient (see Fig. 2), but 
by an increase in energy dissipation. Note that the position of the maximum and the value 
of ~max do not depend on the acoustic properties of the condensed phase. Absorption of en- 
ergy becomes significant for moderate values of $ and ~ ~ 0 in the limit ~ + ~ (glancing in- 
cidence). 

The dependence ~ (A) (Fig. 2) is qualitatively different in the regions $ < 1 and g > 
i. In the first case (small condensation coefficient, sufficiently small angle of incidence) 

increases monotonically with increasing frequency from zero up to a limiting value which 
increases with increasing 6. Energy absorption is significant for A > I. In the second 
case (large angle of incidence) the dependence is nonmonotonic and ~max becomes comparable 
to unity for A S i. The quantity ~ decreases with further increase of A and approaches a 
limiting value such that ~(~) and ~(i/6) become equal in the limit ~ + ~. 

The dependences of the attenuation coefficient �9 of the transmitted wave on A and 
are monotonic (see Fig. 2). The growth of �9 with increasing $ is stronger, the larger the 
value of A. In the limit 6 + ~ (glancing incidence) the quantity �9 approaches unity for any 
value of ~. The quantity �9 increases sharply with increasing A and approaches the limiting 
value (i + 6) -2 when A + ~. Therefore the attenuation increases with increasing angle of 
incidence and increasing Hertz-Knudsen coefficient. The effect of attenuation is signifi- 
cant when ~ ~ i. 

Hence we find that evaporation and condensation processes lead to attenuation of both 
the reflected and refracted waves, except when the frequency or condensation coefficient 
vanish (A = 0 or 6 = 0, respectively). 

The dependences discussed above are universal; the particular frequencies at which the 
effects become significant and the angles corresponding to the extrema are determined by the 
properties of the material. We note that the interval of the parameter $ is also determined 
by the properties of the material. The interval of 6 for the analysis of the total energy 
absorption is (~, ~); for the attenuation of the transmitted wave it is (B, ~/cos 0x), where 
0 x is the angle of total internal reflection. 

It follows from our results that one must have A ~ 1 in order to get significant en- 
ergy absorption. From the definition of A, this implies a large value of the thermal conduc- 
tivity in the condensed phase and a small heat of vaporization. The effect of energy dissi- 
pation is stronger in the case of low pressure and high frequency. 

We consider the attenuation coefficients of sound ~ and T for water and naphthalene 
(see Table i) at a temperature of 300 K, when the saturated vapor pressure is 3564 Pa for 
water and 14.8 Pa for naphthalene. We then find A = 0.995 #f for naphthalene and A = 6.19" 
lO-~T-for water. 

The coefficients ~ and �9 are higher for naphthalene than for water because of the 
larger value of A in naphthalene. This also explains the weak frequency dependence of ~ and 
T in naphthalene (see Fig. 2). Note that energy dissipation is stronger for diffuse inci- 
dence. Energy dissipation decreases with decreasing condensation coefficient. 
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A layered structure can be used to produce greater attenuation of sound. For enample, 
in the case of three aluminum plates of thicknesses 1.5, i, and 1.5 mm, respectively~ with 
gaps of 8 and i0 mm between the plates filled with naphthalene vapor (a 0.5 mm layer of 
naphthalene is applied to the plates), the decrease in the energy of a normally incicent 
sound wave at To = 300 K due to evaporation and condensation reaches 20-40 dB (Fig. 3). The 
complicated frequency dependence is due to resonance phenomena [7]. 

We note that the above results apply to the case of evaporation into an atmosphere of 
the same kind of gas. The presence of a noncondensing diluent can significantly affect the 
quantitative and qualitative features of the energy dissipation process. 

In the absence of neutral gas (low vapor pressure), evaporation and condensation on the 
boundary between phases leads to a significant decrease in the energy of the reflected and 
refracted waves (except for reflection into the condensed phase) for volatile heat-conducting 
materials in the high-frequency region. The dependence of the energy of the reflected wave 
(incidence from the gas phase) on the angle of incidence is nonmonotonic. Energy dissipa- 
tion due to evaporation and condensation processes can be used to measure the condensltion 
coefficients, and can also be used in sound-absorbing and sound-insulating devices. 

NOTATION 

P0, P0, To, density, pressure, and temperature of the gas phase; P0, P0, To, density, 
pressure, and temperature of the condensed phase; p, p', p, p', T, T', acoustic corrections 
to the density, pressure, and temperature in the gas and condensed phases, respectivel.y; v, 
v', velocities of the gas and condensed phases; R gas constant; ~, adiabatic exponent of the 
gas; Q heat of vaporization; $, $', scalar potentials of the gas and condensed phasesl ~' 
vector potential; w, circular frequency; k, k , Ki, wave numbers of the wave in the gas 
phase, the longitudinal wave in the condensed phase, and the transverse wave in the condensed 
phase, respectively; c, c', c', speed of sound in the gas phase and the longitudinal and 
transverse speeds of sound in t~e condensed phase; c~, heat capacity of the condensed phase; 
8, generalized Hertz-Knudsen coefficient; o condensation coefficient; A = cT0~2p~c~i'u~p0Q ~, 

parameter describing the effect of evaporation; ~ = $/cos8, parameter describing the effect 
of the angle of incidence; ~, T, relative attenuation coefficients of the reflected and re- 
fracted waves. 

i. 
2. 

3. 

LITERATURE CITED 

T. M. Muratov and D. A. Labuntsov, Teplofiz. Vys. Temp., i, No. 5, 959-967 (1969). 
M. N. Kogan and N. K. Makashev, Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza, No. 6, 3-11 
(1971). 
G. E. Gorelik, N. V. Pavlyukevich, V. V. Levdanskii, et al., Physical Kinetics anJ 
Transport Processes in the Presence of Phase Transitions [in Russian], Minsk (1980). 

1297 



4. M. Robnik, I. Kuscer, and H. Lang, Int. J. Heat Mass Transf., 22, No. 3, 461-467 (1979). 
5. D.A. Labuntsov and A. P. Kryukov, Teplofiz. Vys. Temp., 25, No. 3, 536-543 (1987). 
6. M.N. Kogan and V. I. Nosik, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 149-156 

(1988). 
7. L.M. Brekhovskikh, Waves in Layered Media [in Russian], Moscow (1957). 

CAPILLARY RISE WITH MENISCUS EVAPORATION FOR 

Kn ~ 0.01 

A. V. Kuz'mich and V. I. Novikova UDC 532.68 

A meniscus step in a capillary has been observed at reduced gas pressures; a 
physical explanation is given. 

Capillary impregnation is widely used in temperature-control systems (porous evapora- 
tive cooling) for use at various pressures and temperatures. Research has shown [i] that 
when an open-pore material is wetted at a certain external pressure, there is a sharp change 
in the liquid position, with the boundary descending, which affects the thermostatic control. 
The thicker the specimen and the smaller the capillary radius, the lower the pressure at 
which the step occurs. 

We have examined impregnation accompanied by evaporation subject to changes in the 
thermodynamic parameters for the medium and the liquid. The apparatus and methods have been 
described in [2]. 

We used cylindrical glass capillaries under a glass vacuum chamber cover in the strictly 
vertical position. The menisci were observed and photographed via an optical system. The 
time was recorded by a timer and a cine camera with built-in clock. A capillary was fixed 
in a holder fitted with a measurement scale (division 4 x 10 -4 m) and filled by bringing up 
a cell containing the liquid to the lower end. The liquids were outgassed distilled water, 
ethyl alcohol, benzene, acetone, dibutyl phthalate, and glycerol. 

The equilibrium rise was measured in two ways for various gas pressures: i) the capil- 
lary was filled at atmospheric pressure, after which the pressure was reduced; and 2) the 
liquid was introduced at reduced pressure, the pressure then being raised to atmospheric. 
The experiments were done with a single radius and various lengths or with various radii but 
a single length. The minimum length was equal to the maximum height of rise at atmospheric 
pressure for the given radius, while the maximum was 0.25 m. The radii varied from 0.17 • 
10 -3 to 0.50 x 10 -3 m. 

When the pressure was reduced from atmospheric to 1.33 x 103 Pa, the rise was unaltered 
and the menisci remained fixed in all the capillaries. At 1.20 x 103 Pa, with capillaries 
0.25 m long (or on further pressure reduction for shorter capillaries), the menisci for water 
descended somewhat below the maximum rise in the atmosphere. At 0.67 x 103 Pa, the menisci 
for water in all the capillaries remained at certain heights characteristic of the radius 
and length, with no alteration as the gas pressure was reduced further. Figure 1 shows that 
the sinking was the larger the greater the length for a given radius. In capillaries with 
the minimum length, there was no change in menuscus position as the pressure was reduced. 
As the step As we took the difference between the heights of the menisci at atmospheric 
pressure and at 0.67 • 103 Pa. Figure 2 shows that As = 0 for capillaries whose lengths 
were equal to the maximum rise in air. The value of As increases with the length for r = 
const, while it decreases as the radius increases for L = const (curves 1-6). For r = 0.17- 
I0 -~ m or less, steps occurred even when the length was about 5 mm greater than the maximum 
rise for water at atmospheric pressure. For r > 0.4"10 -3 m, and for all the lengths (L ! 
0.25 m), there was virtually no shift for water. 
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